
DIZAIN-SYNC
TRAINING
GUIDE

2

Dizain-Sync is an
independent consultantcy
organisation in electronic

design & development,
with more than 30 years

experience.
 With our knowledge we

offer a unique perspective
on the combination of PLM,

EDA, Design and Training
services.

Dizain-Sync’s mission is
to maximize customers

productivity by improving
Design Methodology,

Design Flow, Design and
Designers.

PART OF
dieco
electronics

HDL courses
• Professional VHDL
• Advanced VHDL
• Haskell

System Verilog courses
• Introduction to Verilog
• System Verilog for Verification
• System Verilog Assertions

UVM courses
• Introduction to Universal

Verification Methodology
• Open verification Methodology

SystemC courses
• SystemC Modeling with

introduction to TLM 2.0
• Introduction to SystemC Verification
• Advanced SystemC Verification

Support languages
• Introduction to C++
• Introduction to TCL/TK
• Python

LTspice courses
• LTspice Basic
• LTspice Advanced

4 7

18 20

10 12

Overview
training
courses

4

Introduction
In this 3-day course you will learn how to write efficient VHDL for
modelling, implementation and verification of FPGA and digital ASIC
designs. The training doesn’t only cover the language defined in the
IEEE 1076 standard, but also includes topics focusing on simulation
and synthesis of your design.

Hands-on exercises during the training will help you practice what
you’ve learned, optionally while using the simulation or synthesis tools
of your choice. Experience shows that there is a pleasant interaction
between the students and the trainer during the training. For many
digital designers this course has proven to be a very good start for
using VHDL in their daily work!

Subjects
VHDL Introduction
• VHDL, the history
• Properties of VHDL
• Alternative VHDL descriptions

of the sr latch
• Test Bench
• VHDL Analysis, Elaboration,

and Simulation

VHDL in more detail
• Data types
• Operators
• Overloading
• Subprograms
• Packages
• Analysis order
• Sequential statements
• Concurrent statements
• Modeling delay
• Generic descriptions
• Multiple driven signal
• Port map pitfalls
• Qualification

Synthesis of VHDL
• Synthesis Tools
• What is not supported
• What is supported
• Synchronous model
• Combinational model
• Latches
• Tri-states

Standard Libraries
Finite State Machines

Prerequisites
A digital design background and
preferably some programming
experience in C or another
language.

Audience
Designers of digital systems.

Duration
3 Days

Trainer
Bert Molenkamp

Location
Borne, Nijmegen

Amsterdam

Professional
VHDL

scan
and sign

up for the
training

HDL Courses

5

Introduction
Increase your VHDL proficiency by learn-
ing advanced techniques that will help you
write more robust and reusable code.
This comprehensive course is intended for
designers who already have some
experience with VHDL.

This training is more than just the theory
that is shown below. There is room to
discuss your own case during the training.
Besides that you can ask the trainer to ex-
plain more about a topic of your own choice.

Audience
The training is very suitable for
those who have worked some
time with VHDL. The training is
less suitable for the beginning
VHDL user. For them, the training
Professional VHDL would be better.

Subjects
VHDL-1993/2002/2008 and advanced topics
• More regular syntax
• Shared variable
• Impure functions
• Component instantiation and configuration
• Operators added since VHDL’93
• Waveform
• Signal related attributes
• Postponed processes
• Guarded signals and disconnection

Property Specification Language (PSL)

Fixed point package (VHDL’93 style)
• Introduction Fixed Point
• Representation of fixed point numbers in VHDL
• Examples
• Available operators
• Rouding and saturation
• Pitfall

Floating point package (VHDL’93 style)
Final State Machine

Verilog
• History
• Global differences between Verilog HDL and VHDL
• Modeling styles
• Test environment
• Data types
• Operators

The Intel Quartus Prime Timing Analyzer
• Introduction
• Design
• Constrain the design
• Timing Analyzer
• Combinational Logic

Duration
2 Days

Trainer
Bert Molenkamp

Location
Borne, Nijmegen

Amsterdam

Advanced
VHDL

scan
and sign

up for the
training

HDL Courses

6

Introduction
Haskell is an advanced functional programming language that, in
combination with the Haskell-to-VHDL/Verilog compiler called Clash,
enables straightforward reasoning about the functionality and perfor-
mance of your circuits. Haskell’s clear semantics and concise syntax
enable a design methodology where you can go from a high-level
golden reference to a solution meeting the performance require-
ments using correct-by-construction transformations. For problems
where such a route is less appropriate, Haskell offers powerful testing
frameworks instead, based on constraint random testing and auto-
matic shortest counterexample generation.

In this course you will learn how to effectively use Haskell to create
high-level models and subsequently transform them into efficient
FPGA or ASIC designs. The training includes many hands-on exer-
cises to help you put into practice what you have learned. The course
can have its focus adjusted to suit the experience of the audience.

Training overview
Haskell introduction
• Functional programming
• Polymorphism
• Algebraic data types
• Higher-order functions
• Type inference
• Interactive interpreter

Haskell for circuit design
• Sized data types
• Combinational circuits
• Synchronous circuits
• State machines
• Space vs Time trade-off
• VHDL/Verilog generation

Testing in Haskell
• Unit testing
• Property-based testing
• Constraint random testing
• Automated stimulus shrinking

Prerequisites
Either a digital design
background with some
programming experience,
or an existing programming
background.

Audience
Designers of digital systems.

Duration
3,5 Days

Trainer
Qbaylogic

Location
Borne, Nijmegen

Introduction
to Haskell and Clash

scan
and sign

up for the
training

HDL Courses

7

Introduction
A 3-day course teaching designers to write efficient, accurate RTL
code for synthesis as well as basic testbenching and verification
techniques.

These courses is intended for designers who are new to Verilog and
who wish to become familiar with the language with a particular
emphasis on writing RTL code for synthesis. We also cover how to
construct testbenches for unit level verification of your RTL code.

This course continuously mixes lecture and exercise. There is a
simulation exercise for most topics providing a very hands-on
experience. Synthesizable constructs are clearly identified and
appropriate synthesis coding techniques discussed.
We can offer this class with most popular simulators.

Subjects
• Verilog modeling
• Using your Simulator
• Verilog basics
• Procedural assignments
• Design a sequential pipe
• Synthesizing your design
• Operators
• Programming statements
• Sensitivity lists
• Continuous assignments
• Primitives
• Tasks
• Functions
• Timing accuracy
• Verification using Verilog
• Bi-directionals
• Synthesis issues
• Finite State machines (exercise)

Prerequisites
A digital design background and
preferably some programming ex-
perience in C or another language.

Audience
Digital designers who are new to
Verilog and who wish to become
familiar with the language with a
particular emphasis on writing RTL
code for synthesis.

Duration
3 Days

Trainer
Gert-Jan Tromp

Location
Borne, Nijmegen

Amsterdam

Introduction
to Verilog

scan
and sign

up for the
training

System verilog
Courses

8

Introduction
This SystemVerilog (IEEE 1800) is a
significant new language based on the
widely used and industry standard Verilog
hardware description language. The
SystemVerilog extensions enhance Verilog
in a number of areas, providing productivity
improvements for RTL designers, verification
engineers and for those involved in system
design and architecture. The course
stresses a methodology for implementing
SystemVerilog in your verification environ-
ment. The course is a consistent mix of
lecture and lab-exercises.

Day 1 Introduction to
Verification with
SystemVerilog
• Language Enhancements
• SystemVerilog Data Types
• Arrays & Structures
• SV Scheduler
• Program Control
• Lab-Sparse memory
• Hierarchy
• Tasks & Functions
• Dynamic Processes
• Inter-process Sync

& Communication
• Lab-Mailboxes

Day 2 Classes
• Class Basics
• Constructors
• Lab-OOP
• Virtual Methods
• Inheritance
• Parameterization
• Polymorphism
• Lab-Polymorphism

Prerequisites
Introduction to Verilog training
course or equivalent experience.

Audience
Experienced Verification Engineers
who wish to learn about verification
with SystemVerilog.

Day 3 Interfaces
• Lab-Virtual Interfaces
• Randomization & Constraints
• Randomize
• Constraints
• Random Sequences
• Lab-Randomization
• Functional Coverage
• Covergroups
• Coverpoints and Cross
• Lab-Covergroups

Day 4 SVA
• Concurrent Assertion Basics
• Lab-Assertion Basics
• Boolean Expressions
• Sequences
• Lab-Sequences
• Lab-Data Values
• Properties
• Verification Directives
• Lab-bind

Duration
4 Days

Trainer
Gert-Jan Tromp

Location
Borne, Nijmegen

Amsterdam

SystemVerilog
for Verification

scan
and sign

up for the
training

System verilog
Courses

9

Introduction
This 1-day course is targeted at Design and
Verification engineers who wish to deploy
Assertion based Verification within their
next project. Assertion Based Verification
is becoming a cornerstone of good design
and verification practice. SystemVerilog is
one of the first languages to feature a 100%
native temporal assertion syntax, making it
extremely well integrated with the language.
Our course stresses a methodical approach
to learning and developing good coding style.

This course, which is taught for all the leading simulators is a
consistant mix of lecture and lab-exercises. Targetted quizzes and
labs are designed to reinforce the course material.

Although the content of this class overlaps the final day of our
SystemVerilog for Design and SystemVerilog for Verification courses,
both SVA and our course are applicable to Verilog projects with no
other SystemVerilog content.

Subjects
SystemVerilog Assertions
• Immediate / Concurrent
• Severity system tasks
• SystemVerilog Event

Scheduler
• Concurrent Assertions
• Boolean expressions
• System Functions

Sequence Blocks
• Sequence Operators
• Repetition [*N][*m:n]
• Non-Consecutive Repetition

[=N][=N:M]
• Goto Repetition [->N]

[->N:M]
• Value Change Functions
• Relating sequences
• Seq. expressions: and, or,

intersect
• Sequence expressions
• throughout, within, .ended
• Sequence controls
• Data-use within a sequence

Property block
• Implication |-> |=>
• Sequential antecedents
• Multi-clock support
• matched

Verification directives
• Clock inference and

specification
• Controlling Assertions
• Bind directive
• Reactive SV testbenches

Prerequisites
Students are expected to be
already familiar with the Verilog
language.

Duration
1 Day

Trainer
Gert-Jan Tromp or

Paul Eijkelkamp

Location
Borne, Nijmegen

Amsterdam

SystemVerilog
for Assertions

scan
and sign

up for the
training

System verilog
Courses

10

Introduction
This 3-day course is for engineers
interested in developing SystemVerilog
verification environments using the latest
Universal Verification Methodology (UVM).

• Students will first learn:
• Basic testbench structure
• How to model communication at the

transaction level (TLM)
• How to write analysis components such

as Scoreboards and Coverage Collectors
• Strategies for connecting to RTL

designs

Prerequisites
SystemVerilog for Verification
course or equivalent experience
using SystemVerilog.

Audience
Verification & Design engineers.

Subjects
• Introduction to UVM
• Transaction-level

Communication
• TLM Interfaces, Channels,

Port & Exports
• Basic Testbench Structure

• Components
• Phasing
• Start and end

of simulation
• Dynamic Construction -

Introduction to the UVM
Class Factory

• Connecting to the DUT
• Generating Reports and

Messaging
• Modeling Transactions
• Analysis

• UVM Analysis
components

• Scoreboards, coverage
collectors, predictors

• Hierarchy
• UVM Components and

Hierarchy
• Hierarchical API

• Creating a Configurable
Test Environment
• Factory Overrides
• Resources, configurations

• Stimulus generation
• Sequences
• Scenarios

(testing patterns)
• UVM registers

• Register model
development

• Register model integration
• Register model usage

After mastering the basics, students will learn best-practice
techniques to maximize the reusability of their test environments.
Topics include:
• Using the UVM factory
• Managing complexity using hierarchy and factory overrides
• Making reusable testbenches
• Developing test cases using UVM sequences
• Using UVM Registers.

Duration
3 Days

Trainer
Gert-Jan Tromp

Location
Borne, Nijmegen

Amsterdam

Universal Verification
Methodology (UVM)

scan
and sign

up for the
training

UVM
Courses

11

Introduction
This 3-day course is for engineers interest-
ed in developing SystemVerilog verification
environments using the Open Verification
Methodology (OVM).

Students will first learn:
• Basic testbench structure
• How to model communication at the transaction level (TLM)
• How to write analysis components such as Scoreboards and

Coverage Collectors
• Strategies for connecting to RTL designs
After mastering the basics, students will learn best-practice tech-
niques to maximize the reusability of their test environments.

Subjects
• Introduction to OVM
• Transaction-level Communi-

cation
• TLM Interfaces
• TLM Channels
• Port & Exports

• Basic Testbench Structure
• Components
• Threaded_component
• Environment
• Phases

• Dynamic Construction
• Introduction to the OVM

Class Factory
• Connecting to the DUT

• Transactors
• Virtual Interfaces
• Working with BFMs

• Generating Reports and
Messaging

• Modeling Transactions
• Adding Analysis Components

• Analysis components
• Scoreboards
• Coverage Collectors

• Control Blocks
• Hierarchy
• OVM Component and

Hierarchy
• Hierarchical API

• Creating a Configurable Test
Environment
• Factory Overrides
• Configuration

• Managing Test cases
• Layered Stimulus

(Scenarios)
• Programmable Transaction

Sequences
• Other OVM Classes
• Mixed Language Simulation

• Using SystemC TLM
models in a SystemVerilog
Test Environment

• Design Patterns
Prerequisites
SystemVerilog for Verification
course or equivalent experience.

Audience
Verification & Design engineers.

Duration
3 Days

Trainer
Gert-Jan Tromp

Location
Borne, Nijmegen

Amsterdam

Open Verification
Methodology (OVM)

scan
and sign

up for the
training

UVM
Courses

12

Introduction
A 3-day workshop for engineers who are
new to SystemC or those who may be self-
taught, with an interest in learning
SystemC for modeling purposes.

Course Description
This 3-day workshop introduces the student
to the SystemC C++ class library and the
TLM 2.0 modeling standard. It is intended
for engineers who are new to System Cor
those who may be self-taught, with an in-
terest in learning SystemC for modeling pur-
poses.The student will learn how to write,
compile, execute, and debug system and
hardware descriptions with SystemC, and
will receive thorough and in-depth coverage
of the concepts of the Accellera/IEEETLM
2.0 modeling standard.This course is mixed
lecture and exercises, with an exercise for
nearly every topic.

Prerequisites
Introduction to C++ (2 days)
training course
Course may be taken immediately
before this course.

Audience
Hardware, software and systems
engineers who have a good
working knowledge of C++ and
SystemC, and want to learn to use
the OSCI TLM-2.0 standard.

Duration
3 Days

Trainer
Gert-Jan Tromp or
 Paul Eijkelkamp

Location
Borne, Nijmegen

Amsterdam

SystemC Introduction
for Modeling with TLM 2.0

scan
and sign

up for the
training

SystemC
courses

Course Outline

Introduction to SystemC
• Core Library Basics

• Modules
• Communication (channels,

ports,and exports)
• Module Constructor

(and exercise)
• Simulationo Scheduler
• Events and Event Queues

• Modeling Behavior
• Method Processes

(and exercise)
• Thread Processes

(and exercise)
• Module Instantiation

(in module) (and exercise)
• Simulation Initialization

• Core Library Elements
• SystemC Data Types
• Primitive Channels

• User defined channels
(and exercise)

• Custom Constructors

Exports
Dynamic Processes (and exercise)

Introduction to the IEEETLM
2.0 Standard
• TLM 2.0 Overview

• Interface functions
• Socketso Generic payload
• Protocol

• Interfaces
• Transport
• DMI
• Debug

• Sockets
• Initiator and Target
• Socket Binding
• Hierarchy, Multi-connect
• Topology Examples

• Generic Payload Overview
• Attributes

• LT Coding style (and exercise)
• Transport Interface
• Temporal Decoupling
• Quantum Keeper

• AT Coding Style (and exercise)
• Protocol PhasesoForward,

Backward, and Return Paths
• Base Protocol (2-phase)
• Payload Event Queue (PEQ)

• DMI interface DMI Hint
• DMI Data Structure
• Invalidating DMI

• Debug Interface (and exercise)
• Debug Transport Interface

• Convenience Sockets
(and exercise)

• Simple Sockets
• Tagged Sockets
• Multi-pass through Sockets

• Generic Payload In-dept
• Byte Enable
• Streaming
• Endianness
• Memory Management

Generic Payload Extensions
(and exercise)

• Base Protocol In-depth
• 4-state and Variants

13

Jaap
Fijnvandraat

Jaap Fijnvandraat is an
expert in modelling and

simulation in several
disciplines. In Signify he
was responsible for the

international roll-out and
support of the Design
Analysis environment.

As such he has
developed and given a

lot of trainings, especially
in the area of Electronic

Design simulation.
In July 2018 Jaap started
his own company, FEMS
Consultancy, offering his
expertise on modelling

and simulation.

Gert-Jan Tromp

Gert-Jan Tromp
is an expert in

electronic design and
verification, embedded
software, design tools
development, technical

writing and digital
systems testing. He has
more than 20 years of
experience as a trainer

and consultant for
Dizain-Sync.

Bert Molenkamp

Bert Molenkamp is a
teacher of the faculty
Electrical Engineering,

Mathematics and
Computer Science at the

University of Twente.
His field of research is
Digital System Design,

especially focussing
on the use of VHDL in
the design process of
a digital system, and
synthesis aspects of
VHDL. He is a VHDL
trainer at Dizain-Sync

B.V. since 1989.

Paul Eijkelkamp

Paul Eijkelkamp is
a consultant of

Dizain-Sync. His
expertise lies in the field

of simulation models,
hardware description

languages like SystemC,
VHDL and Verilog,

programming languages
and setting up EDA

environments. He has
more than twenty

years of experience in
providing training.

13

Trainers

14

Location overnight
Hotel van der Valk

Hengelo

Enjoy
your
lunch

Location of the course
The training location is at our
office in Borne. Lunch is also
served here. The overnight
stays, lunch and dinner are in
the Hotel van der Valk. In case
you have multiple people to be
trained, we can also come to
you for an on-site training, sav-
ing travel cost and optimizing
the time for the trainees. Please
contact us for the possibilities.

14

Location
Nijmegen

Location
Amsterdam

Foto: Kireyonok Yuliya

15

Introduction
This 3-day workshop introduces the student
to the SystemC C++ class library and to the
SystemC Verification library.

It is intended for engineers who are new to SystemC or those
who may be self-taught, with an interest in learning SystemC
for verification purposes. The student will learn how to write,
compile, execute and debug system and hardware descriptions
and testbenches with SystemC. This course is mixed lecture and
exercises, with an exercise for nearly evaery topic.

Subjects
• Introduction
• SystemC modeling
• Basic modeling structure
• Getting started - running & debugging
• Modules

• Channels, ports, interfaces
• Module constructor
• Events
• Processes in general
• Thread processes
• Method processes
• Module instantiation (in modules)

• sc_main
• SystemC data types
• Primitive channels
• SystemC Verification

• Data Introspection
• Randomization
• Constraints
• Callbacks
• Sparse arrays
• Customizing Data Generation

Prerequisites
Introduction to C++ (1 day) training
course.

Hands-On Labs
A good portion of class time will be
spent applying principles learned in
lecture to hands-on labs.

Audience
Desig engineers, system engineers
and software engineers.

Duration
3 Days

Trainer
Paul Eijkelkamp

Location
Borne, Nijmegen

Amsterdam

Introduction to
SystemC for Verification

scan
and sign

up for the
training

SystemC
courses

16

Introduction
This 3-day workshop is intended for
engineers who are familiar with SystemC
with an interest in using SystemC for
Advanced Verification.

Prerequisites
Introduction to SystemC for
Verification training course (or
equivalent experience).

Hands-On Labs
A good proportion of class time will
be spent on practical lab exercises.

Audience
Desig engineers, system engineers
and software engineers.

Subjects
• Verification concepts
• Testbench structure
• Testbench strategies
• Stimulus generation

• Transaction-based stimulus
• Constrained randomization of data
• Randomizing control flow
• Dynamic construction with parameters
• Using dynamic processes for stimulus
• Transactors

• Mixed-language simulation (tool specific)
• Verification

• Shadow models
• Monitors
• Assertions
• Checkers

• Analysis
• Intro to C++ Standard Template

Library - Applying STL: Scoreboards
• Transaction-level logging / viewing
• Coverage

- Code / line coverage (tool specific)
- Functional coverage (tool specific)

• Reactivity
• Closing the loop: feedback to stimulus

This 3-day workshop focuses on verification
and test bench techniques using SystemC
and the SystemC Verification Library.

Duration
3 Days

Trainer
Paul Eijkelkamp

Location
Borne, Nijmegen

Amsterdam

Advanced SystemC
for Verification

scan
and sign

up for the
training

SystemC
courses

17

Introduction
Our C++ courses are intended to introduce
(or refresh) engineers who will be using C++
for design, modeling or verification purposes
such as using the SystemC class library or
the SystemC Verification library.

We offer 1-day, 2-day and 3-day versions of the course to meet the
needs of the student with different levels of C++ experience.
The following subjects are for the 3-day course. The 1-and 2-day
versions will skip certain subjects depending on the need.

Subjects
• Introduction
• Getting Started
• Preprocessor and Libraries
• Program Structure
• Basic Language Elements
• More Data Types
• I/O
• Pointers & References
• Classes - Modeling “objects”
• Constants
• Function overloading
• Initialization & cleanup
• Operator Overloading
• Templates
• Template specialization
• Useful utilities in the Standard Template Library [STL] (+ exercise)
• Inheritance

Prerequisites
A digital design background and
preferably some programming
experience in C or another
language.

Hands-On Labs
A good portion of class time
will be spent applying principles
learned in lecture to hands-on
labs.

Duration
1 day, 2 days

or 3 days

Trainer
Paul Eijkelkamp

Location
Borne, Nijmegen

Amsterdam

Introduction
to C++

scan
and sign

up for the
training

SystemC
courses

18

Introduction
A 3-day all-hands-on-deck workshop to get acquainted with the ba-
sics (and not so basics) of the Python scripting language, with a clear
focus on learning by doing, and making scripts that help automate
everyday tasks.

Course description:
The objective of the course is to study the foundational aspects of
Python programming with the focus set on script writing, data manip-
ulation, and program organization. After completion, students should
be able to start writing useful Python programs on their own and
explore the multitude of applications of Python that might be of their
interest (“throwaway” scripting, lab automation, system administra-
tion, data science, scientific programming, or web frameworks, just to
name a few.)

Course outline:
Setup of Python.
• Introduction to Python: scripts, basic

data types and flow control.
• Data structures, containers, and

collections.
• Organizing your program: functions,

exceptions, modules.
• Classes and Object-Oriented

Programming (OOP) in Python.
• Generators and other advanced topics.
• Testing, debugging, and packaging code.

Prerequisites
This course intends to present the
fundamentals of Python to people that
already have at least basic programming
experience. No specific programming
language knowledge is required, but a
basic idea of programming concepts
(e.g., conditionals and loops), and operating
system use (working with files, directories,
and the terminal) are assumed.

Audience
Engineers, scientists, and sysadmins that
want to learn the basics of data processing
and scripting with Python to later apply it
to their field of expertise.

Duration
3 Days

Trainer
Jokin Segundo Barbarro

Location
Borne, Nijmegen

Introduction
to Python

scan
and sign

up for the
training

Support
languages

19

Introduction
This 2-day class will introduce the student
to the TCL programming language and to
the GUI capabilities of the Tk toolkit. Upon
completion of this class, the student will be
able to write useful TCL programs to auto-
mate operating system tasks and add script-
ing capabilities to C programs. Students will
also be introduced to TCL’s GUI capabilities
through Tk toolkit.

Prerequisites
Student will need to have a work-
ing knowledge of UNIX operating
system. Also, basic programming
experience in C or UNIX shells is
highly recommended

Hands-On Labs
A good proportion of class time will
be spent on practical lab exercises.

Audience
Desig engineers, system engineers
and software engineers.

Subjects
• Day 1

• Introduction
• Getting Started
• TCL Basics
• TCL Commands
• String processing
• Lists
• TCL I/O
• TCL Arrays
• Procedures
• TCL in the Unix environment

• Day 2
• TK Basics
• Arranging Widgets with Pack
• Arranging widgets with Grid
• Tk Events and Binding
• Basic TK Widgets
• Menus
• Scrollbars
• Listboxes
• Text widget
• Canvas widget
• Combining TCL and C

The format of the class is mixed lecture/lab, with lab exercises
immediately following each major topic. The lab exercises are
intended to reinforce the preceding lecture topic(s), and are designed
to be directly applicable in an EDA context.

Duration
2 Days

Trainer
Paul Eijkelkamp

Location
Borne, Nijmegen

Amsterdam

Introduction
to Tcl/Tk

scan
and sign

up for the
training

Support
Languages

20

Introduction
In this 1-day training workshop you will
learn about the special features of LTspice
for setting up simulations and performing
analysis results. It is a hands-on training.
Each subject starts with a short introduction
after which guided exercises help to
understand and apply the new features.
Even for those already familiar with LTspice
this course has proven to reveal new
features that make the use of LTspice yet
more efficient.

Training overview

LTspice Introduction
• Strength of LTspice
• Positioning of LTspice

Schematic entry
• Basic elements and actions

Performing an analysis
• DC, AC, transient analysis
• Measurements
• Sweeping parameters

Hierarchical models
• Using a schematic model versus a library model
• Special LTspice elements

Information resources

Prerequisites
Some experience with Spice-like
circuit simulation.

Audience
Electrical engineers, wanting to
exploit the strength of LTspice for
simulating their designs.

scan
and sign

up for the
training

LTspice
courses

Duration
1 Day

Trainer
Jaap Fijnvandraat

Location
Borne, Nijmegen

Amsterdam

LTspice Basic

21

Introduction
In this 2-day training workshop you will
learn about the advanced use of LTspice for
special purposes, especially for modelling
(sub-)circuits. Part of the workshop is using
LTspice functions for modelling a Pulse
Width Modulator to drive a Half Bridge.

Training overview

Tracking of parameters
• Sensitivity analysis
• Design of experiments

Statistical simulations
• Parameter distributions
• Noise in the time domain

Advanced Behavioural Modelling
• Mathematical functions
• Differentiation and integration

Averaged modelling

Performing a Fast Fourier Transformation
Initial Conditions and Restarting
• ICs on nodal voltages
• ICs on state elements

Prerequisites
Having the knowledge of the
LTspice Basic course (having
experience with measurements,
sweeping parameters, hierarchical
models). Regular user of LTspice
with at least half a year of real
experience.

Audience
Electrical engineers who want
to learn more in-depth the ca-
pabilities of LTspice in modelling
sub-circuits and in performing
simulations for parameter studies.

Also more advanced use of parameters – e.g. for statistics – is
demonstrated. The use of Initial Conditions for (re)starting
simulations is treated as well. Furthermore some special techniques
(FFTs and Averaged Modelling) are shown. The course will help
one to build a behavioural model of (own-designed) sub-circuits or
(bought-in) ASICs.

scan
and sign

up for the
training

LTspice
courses LTspice Advanced

Duration
2 Days

Trainer
Jaap Fijnvandraat

Location
Borne, Nijmegen

Amsterdam

22

SHAPING
THE FUTURE

23

More information
Would you like more information about
these courses please contact US or visit our
website

Contact

training@dizain-sync.com
www.dizain-sync.com

New - Private course
Would you prefer some extra personal at-
tention? Then you can book a private lesson
or a private course. You do not have to wait
for full classes and you can start whenever
you want in consultation with the trainer.
• The lessons are one-on-one and so you

get all the attention.
• The lessons are provided on your wishes

and level.
• You can bring your own case.

Tailor made training
Beside our standard training program we
can also provide customer specific training.
For example training on your design flow,
data management, simulation or build
automation.

Contact us to discuss
dates and prices

Dizain-Sync B.V
Oostermaat 2
7623 CS Borne
The Netherlands
+31 (0)74 2650 050
info@dizain-sync.com

